Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Redox Rep ; 29(1): 2341470, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38629504

RESUMO

Cisplatin is widely employed in clinical oncology as an anticancer chemotherapy drug in clinical practice and is known for its severe ototoxic side effects. Prior research indicates that the accumulation of reactive oxygen species (ROS) plays a pivotal role in cisplatin's inner ear toxicity. Hesperidin is a flavanone glycoside extracted from citrus fruits that has anti-inflammatory and antioxidant effects. Nonetheless, the specific pharmacological actions of hesperidin in alleviating cisplatin-induced ototoxicity remain elusive. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a critical mediator of the cellular oxidative stress response, is influenced by hesperidin. Activation of Nrf2 was shown to have a protective effect against cisplatin-induced ototoxicity. The potential of hesperidin to stimulate Nrf2 in attenuating cisplatin's adverse effects on the inner ear warrants further investigation. This study employs both in vivo and in vitro models of cisplatin ototoxicity to explore this possibility. Our results reveal that hesperidin mitigates cisplatin-induced ototoxicity by activating the Nrf2/NQO1 pathway in sensory hair cells, thereby reducing ROS accumulation, preventing hair cell apoptosis, and alleviating hearing loss.


Assuntos
Antineoplásicos , Hesperidina , Ototoxicidade , Humanos , Cisplatino/toxicidade , Hesperidina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Ototoxicidade/tratamento farmacológico , Ototoxicidade/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Antineoplásicos/toxicidade , Células Ciliadas Auditivas/metabolismo , Apoptose
2.
Chem Biol Interact ; 393: 110939, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38490643

RESUMO

Cisplatin (CDDP) is broadly employed to treat different cancers, whereas there are no drugs approved by the Food and Drug Administration (FDA) for preventing its side effects, including ototoxicity. Quercetin (QU) is a widely available natural flavonoid compound with anti-tumor and antioxidant properties. The research was designed to explore the protective effects of QU on CDDP-induced ototoxicity and its underlying mechanisms in male C57BL/6 J mice and primary cultured pericytes (PCs). Hearing changes, morphological changes of stria vascularis, blood labyrinth barrier (BLB) permeability and expression of apoptotic proteins were observed in vivo by using the auditory brainstem response (ABR) test, HE staining, Evans blue staining, immunohistochemistry, western blotting, etc. Oxidative stress levels, mitochondrial function and endothelial barrier changes were observed in vitro by using DCFH-DA probe detection, flow cytometry, JC-1 probe, immunofluorescence and the establishment in vitro BLB models, etc. QU pretreatment activates the PI3K/AKT signaling pathway, inhibits CDDP-induced oxidative stress, protects mitochondrial function, and reduces mitochondrial apoptosis in PCs. However, PI3K/AKT specific inhibitor (LY294002) partially reverses the protective effects of QU. In addition, in vitro BLB models were established by coculturing PCs and endothelial cells (ECs), which suggests that QU both reduces the CDDP-induced apoptosis in PCs and improves the endothelial barrier permeability. On the whole, the research findings suggest that QU can be used as a novel treatment to reduce CDDP-induced ototoxicity.


Assuntos
Cisplatino , Ototoxicidade , Camundongos , Animais , Masculino , Cisplatino/farmacologia , Cisplatino/metabolismo , Pericitos/metabolismo , Quercetina/farmacologia , Quercetina/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células Endoteliais/metabolismo , Ototoxicidade/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Apoptose
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167024, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38242180

RESUMO

Oxidative stress is the common mechanism of sensorineural hearing loss (SNHL) caused by many factors, such as noise, drugs and ageing. Here, we used tert-butyl hydroperoxide (t-BHP) to cause oxidative stress damage in HEI-OC1 cells and in an in vitro cochlear explant model. We observed lipid peroxidation, iron accumulation, mitochondrial shrinkage and vanishing of mitochondrial cristae, which caused hair cell ferroptosis, after t-BHP exposure. Moreover, the number of TUNEL-positive cells in cochlear explants and HEI-OC1 cells increased significantly, suggesting that t-BHP caused the apoptosis of hair cells. Administration of deferoxamine (DFOM) significantly attenuated t-BHP-induced hair cell loss and disordered hair cell arrangement in cochlear explants as well as HEI-OC1 cell death, including via apoptosis and ferroptosis. Mechanistically, we found that DFOM treatment reduced t-BHP-induced lipid peroxidation, iron accumulation and mitochondrial pathological changes in hair cells, consequently mitigating apoptosis and ferroptosis. Moreover, DFOM treatment alleviated GSH depletion caused by t-BHP and activated the Nrf2 signalling pathway to exert a protective effect. Furthermore, we confirmed that the protective effect of DFOM mainly depended on its ability to chelate iron by constructing Fth1 knockout (KO), TfR1 KO and Nrf2 KO HEI-OC1 cell lines using CRISPR/Cas9 technology and a Flag-Fth1 (overexpression) HEI-OC1 cell line using the FlpIn™ System. Our findings suggest that DFOM is a potential drug for SNHL treatment due to its ability to inhibit apoptosis and ferroptosis by chelating iron and scavenging reactive oxygen species (ROS).


Assuntos
Desferroxamina , Ototoxicidade , Humanos , terc-Butil Hidroperóxido/toxicidade , terc-Butil Hidroperóxido/metabolismo , Desferroxamina/farmacologia , Ototoxicidade/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Células Ciliadas Auditivas/metabolismo , Ferro/metabolismo
4.
J Appl Toxicol ; 44(2): 235-244, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37650462

RESUMO

Gentamicin (GM) is one of the commonly used antibiotics in the aminoglycoside class but is ototoxic, which constantly impacts the quality of human life. Pyrroloquinoline quinone (PQQ) as a redox cofactor produced by bacteria was found in soil and foods that exert an antioxidant and redox modulator. It is well documented that the PQQ can alleviate inflammatory responses and cytotoxicity. However, our understanding of PQQ in ototoxicity remains unclear. We reported that PQQ could protect against GM-induced ototoxicity in House Ear Institute-Organ of Corti 1 (HEI-OC1) cells in vitro. To evaluate reactive oxygen species (ROS) production and mitochondrial function, ROS and JC-1 staining, oxygen consumption rate (OCR), and extracellular acidification rate (ECAR) measurements in living cells, mitochondrial dynamics analysis was performed. GM-mediated damage was performed by reducing the production of ROS and inhibiting mitochondria biogenesis and dynamics. PQQ ameliorated the cellular oxidative stress and recovered mitochondrial membrane potential, facilitating the recovery of mitochondrial biogenesis and dynamics. Our in vitro findings improve our understanding of the GM-induced ototoxicity with therapeutic implications for PQQ.


Assuntos
Gentamicinas , Ototoxicidade , Humanos , Gentamicinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cofator PQQ/farmacologia , Cofator PQQ/uso terapêutico , Cofator PQQ/metabolismo , Ototoxicidade/etiologia , Ototoxicidade/prevenção & controle , Ototoxicidade/metabolismo , Células Ciliadas Auditivas/metabolismo , Antibacterianos/metabolismo , Apoptose
5.
Otol Neurotol ; 45(1): e49-e56, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38085767

RESUMO

BACKGROUND: The widespread use of aminoglycosides is a prevalent cause of sensorineural hearing loss. Patients receiving aminoglycosides usually have elevated levels of circulating stress hormones due to disease or physiological stress; however, whether the stress hormone cortisol impacts aminoglycoside-mediated injury of cochlear hair cells has not been fully investigated. METHODS: House Ear Institute-Organ of Corti 1 (HEI-OC1) cells with or without cortisol pretreatment were exposed to gentamicin, we investigated the effect of cortisol pretreatment on gentamicin ototoxicity by assessing cell viability. Molecular pathogenesis was explored by detecting apoptosis and oxidative stress. Meanwhile, by inhibiting glucocorticoid receptors (GR) and mineralocorticoid receptors (MR), the potential roles of receptor types in cortisol-mediated sensitization were evaluated. RESULTS: Cortisol concentrations below 75 µmol/l did not affect cell viability. However, pretreatment with 50 µmol/l cortisol for 24 hours sensitized hair cells to gentamicin-induced apoptosis. Further mechanistic studies revealed that cortisol significantly increased hair cell apoptosis and oxidative stress, and altered apoptosis-related protein expressions induced by gentamicin. In addition, blockade of either GR or MR attenuated cortisol-induced hair cell sensitization to gentamicin toxicity. CONCLUSION: Cortisol pretreatment increased mammalian hair cell susceptibility to gentamicin toxicity. Sensitization was related to the activation of the intrinsic apoptotic pathway and excessive generation of reactive oxygen species. Cortisol may exacerbate aminoglycoside ototoxicity.


Assuntos
Antibacterianos , Gentamicinas , Células Ciliadas Auditivas , Hidrocortisona , Ototoxicidade , Animais , Humanos , Aminoglicosídeos , Antibacterianos/efeitos adversos , Antibacterianos/farmacologia , Apoptose , Gentamicinas/efeitos adversos , Gentamicinas/toxicidade , Células Ciliadas Auditivas/efeitos dos fármacos , Hidrocortisona/farmacologia , Mamíferos/metabolismo , Ototoxicidade/etiologia , Ototoxicidade/metabolismo , Inibidores da Síntese de Proteínas , Espécies Reativas de Oxigênio/metabolismo
6.
Arch Biochem Biophys ; 748: 109766, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37813237

RESUMO

AIMS: FAM134B, the initial endoplasmic reticulum (ER)-phagy receptor identified, facilitates ER-phagy during ER stress. The malfunction of FAM134B has been demonstrated to have a crucial role in the pathological mechanisms of diverse human ailments. However, the role of FAM134B-mediated ER-phagy in ototoxicity, particularly in cisplatin-induced ototoxicity, remains unclear. The present study endeavors to investigate whether FAM134B is expressed in House Ear Institute-Organ of Corti 1 (HEI-OC1) and C57BL/6 murine cochlear hair cells (HCs), and to explore its potential function in cisplatin-mediated ototoxicity, with the aim of discovering new insights that can mitigate or forestall the irreversible adverse effect of cisplatin. METHODS: Immunofluorescence (IF) staining was used to test the expression pattern of FAM134B, levels of C/EBP-homologous protein (CHOP), autophagy, and co-localization ratio of lysosomes and ER. Western blotting was employed to measure changes in expression levels of FAM134B, LC3B, ER stress-related proteins, LAMP1 and apoptotic mediators. Cell apoptosis was examined using transferase dUTP nick end labeling (TUNEL) assay and flow cytometry. RESULTS: In the present investigation, it was observed that FAM134B exhibited a diffuse expression pattern in the cytoplasm and nuclei of control HEI-OC1 cells. Following cisplatin administration, FAM134B was found to accumulate and form distinct dots around the nuclei, concomitant with increased levels of ER-phagy, ER stress, unfolded protein response (UPR), and cell apoptosis. Additionally, knockdown of FAM134B resulted in reduced ER-phagy, mitigated ER stress and UPR, and decreased apoptotic activity in HEI-OC1 cells following cisplatin exposure. CONCLUSIONS: Collectively, the findings of this study demonstrate that FAM134B-mediated ER-phagy enhances the susceptibility of HCs to ER stress and apoptosis in response to cisplatin-induced stress. This suggests a sequential progression of ER-phagy, ER stress and apoptosis following cisplatin stimulus, and implies the potential therapeutic benefit of inhibiting of FAM134B-mediated ER-phagy in the prevention of cisplatin-related ototoxicity.


Assuntos
Cisplatino , Ototoxicidade , Camundongos , Humanos , Animais , Cisplatino/toxicidade , Ototoxicidade/metabolismo , Estresse do Retículo Endoplasmático , Células Ciliadas Auditivas/metabolismo , Autofagia , Retículo Endoplasmático/metabolismo , Apoptose
7.
J Cell Sci ; 136(14)2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37334742

RESUMO

Cisplatin is an effective platinum-based chemotherapeutic with several side effects, including ototoxicity. Cochlear cells have low rates of proliferation yet are highly susceptible to cisplatin. We hypothesised that cisplatin ototoxicity might be caused by cisplatin-protein interactions rather than cisplatin-DNA interactions. Two known cisplatin-binding proteins are involved in the stress granule (SG) response. SGs are a pro-survival mechanism involving formation of transient ribonucleoprotein complexes during stress. We examined the effects of cisplatin on SG dynamics and composition in cell lines derived from the cochlea and retinal pigment epithelium. Cisplatin-induced SGs are significantly diminished in size and quantity compared to arsenite-induced SGs and are persistent after 24 h recovery. Additionally, cisplatin pre-treated cells were unable to form a typical SG response to subsequent arsenite stress. Cisplatin-induced SGs had significant reductions in the sequestration of eIF4G and the proteins RACK1 and DDX3X. Live-cell imaging of Texas Red-conjugated cisplatin revealed its localisation to SGs and retention for at least 24 h. We show cisplatin-induced SGs have impaired assembly, altered composition and are persistent, providing evidence of an alternate mechanism for cisplatin-induced ototoxicity via an impaired SG response.


Assuntos
Arsenitos , Ototoxicidade , Humanos , Cisplatino/farmacologia , Arsenitos/toxicidade , Arsenitos/metabolismo , Ototoxicidade/metabolismo , Grânulos de Estresse , Grânulos Citoplasmáticos/metabolismo
8.
Neurobiol Dis ; 183: 106176, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37263384

RESUMO

Aminoglycoside antibiotics (AGAs) are widely used in life-threatening infections, but they accumulate in cochlear hair cells (HCs) and result in hearing loss. Increases in adenosine triphosphate (ATP) concentrations and P2X7 receptor expression were observed after neomycin treatment. Here, we demonstrated that P2X7 receptor, which is a non-selective cation channel that is activated by high ATP concentrations, may participate in the process through which AGAs enter hair cells. Using transgenic knockout mice, we found that P2X7 receptor deficiency protects HCs against neomycin-induced injury in vitro and in vivo. Subsequently, we used fluorescent gentamicin-Fluor 594 to study the uptake of AGAs and found fluorescence labeling in wild-type mice but not in P2rx7-/- mice in vitro. In addition, knocking-out P2rx7 did not significantly alter the HC count and auditory signal transduction, but it did inhibit mitochondria-dependent oxidative stress and apoptosis in the cochlea after neomycin exposure. We thus conclude that the P2X7 receptor may be linked to the entry of AGAs into HCs and is likely to be a therapeutic target for auditory HC protection.


Assuntos
Aminoglicosídeos , Ototoxicidade , Animais , Camundongos , Aminoglicosídeos/toxicidade , Aminoglicosídeos/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Ototoxicidade/metabolismo , Antibacterianos/toxicidade , Neomicina/toxicidade , Neomicina/metabolismo , Células Ciliadas Auditivas/metabolismo , Cóclea , Trifosfato de Adenosina/metabolismo
9.
J Cancer Res Ther ; 19(Supplement): S0, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37147955

RESUMO

Introduction: Chemotherapeutic agents can have both serious side effects and ototoxicity, which can be caused by direct toxic effects or by metabolic derangement by the agents. Cabazitaxel (CBZ) is a next-generation semi-synthetic taxane derivative that is effective in both preclinical models of human tumors that are sensitive or resistant to chemotherapy and in patients suffering from progressive prostate cancer despite docetaxel treatment. The primary aim of this study is to investigate the ototoxicity of CBZ in a rat model. Materials and Methods: : A total of 24 adult male Wistar-Albino rats were equally and randomly divided into four groups. CBZ (Jevtana, Sanofi-Aventis USA) was intraperitoneally administered to Groups 2, 3, and 4 at doses of 0.5, 1.0, and 1.5 mg/kg/week, respectively, for 4 consecutive weeks; Group 1 received only i.p. saline at the same time. At the end of the study, the animals were sacrificed and their cochlea removed for histopathological examination. Results: : Intraperitoneal administration of CBZ exerted an ototoxic effect on rats, and the histopathological results became worse in a dose-dependent manner (P < 0.05). Conclusion: : Our findings suggest that CBZ may be an ototoxic agent and can damage the cochlea. More clinical studies should be conducted to understand its ototoxicity.


Assuntos
Antineoplásicos , Ototoxicidade , Neoplasias da Próstata , Humanos , Animais , Ratos , Masculino , Antineoplásicos/toxicidade , Antineoplásicos/metabolismo , Ototoxicidade/metabolismo , Ototoxicidade/patologia , Ratos Wistar , Cóclea/metabolismo , Cóclea/patologia , Neoplasias da Próstata/patologia
10.
Hear Res ; 434: 108783, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37167889

RESUMO

Sensorineural hearing loss (SNHL) can either be genetically inherited or acquired as a result of aging, noise exposure, or ototoxic drugs. Although the precise pathophysiological mechanisms underlying SNHL remain unclear, an overwhelming body of evidence implicates mitochondrial dysfunction and oxidative stress playing a central etiological role. With its high metabolic demands, the cochlea, particularly the sensory hair cells, stria vascularis, and spiral ganglion neurons, is vulnerable to the damaging effects of mitochondrial reactive oxygen species (ROS). Mitochondrial dysfunction and consequent oxidative stress in cochlear cells can be caused by inherited mitochondrial DNA (mtDNA) mutations (hereditary hearing loss and aminoglycoside-induced ototoxicity), accumulation of acquired mtDNA mutations with age (age-related hearing loss), mitochondrial overdrive and calcium dysregulation (noise-induced hearing loss and cisplatin-induced ototoxicity), or accumulation of ototoxic drugs within hair cell mitochondria (drug-induced hearing loss). In this review, we provide an overview of our current knowledge on the role of mitochondrial dysfunction and oxidative stress in the development of SNHL caused by genetic mutations, aging, exposure to excessive noise, and ototoxic drugs. We also explore the advancements in antioxidant therapies for the different forms of acquired SNHL that are being evaluated in preclinical and clinical studies.


Assuntos
Perda Auditiva Provocada por Ruído , Perda Auditiva Neurossensorial , Ototoxicidade , Humanos , Ototoxicidade/metabolismo , Perda Auditiva Neurossensorial/induzido quimicamente , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/tratamento farmacológico , Estresse Oxidativo , Perda Auditiva Provocada por Ruído/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , DNA Mitocondrial/uso terapêutico , Mitocôndrias/metabolismo
11.
Neurobiol Dis ; 182: 106134, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37100209

RESUMO

The vestibular ganglion contains primary sensory neurons that are postsynaptic to the transducing hair cells (HC) and project to the central nervous system. Understanding the response of these neurons to HC stress or loss is of great interest as their survival and functional competence will determine the functional outcome of any intervention aiming at repair or regeneration of the HCs. We have shown that subchronic exposure to the ototoxicant 3,3'-iminodipropionitrile (IDPN) in rats and mice causes a reversible detachment and synaptic uncoupling between the HCs and the ganglion neurons. Here, we used this paradigm to study the global changes in gene expression in vestibular ganglia using RNA-seq. Comparative gene ontology and pathway analyses of the data from both model species indicated a robust downregulation of terms related to synapses, including presynaptic and postsynaptic functions. Manual analyses of the most significantly downregulated transcripts identified genes with expressions related to neuronal activity, modulators of neuronal excitability, and transcription factors and receptors that promote neurite growth and differentiation. For choice selected genes, the mRNA expression results were replicated by qRT-PCR, validated spatially by RNA-scope, or were demonstrated to be associated with decreased expression of the corresponding protein. We conjectured that decreased synaptic input or trophic support on the ganglion neurons from the HC was triggering these expression changes. To support this hypothesis, we demonstrated decreased expression of BDNF mRNA in the vestibular epithelium after subchronic ototoxicity and also downregulated expression of similarly identified genes (e.g Etv5, Camk1g, Slc17a6, Nptx2, Spp1) after HC ablation with another ototoxic compound, allylnitrile. We conclude that vestibular ganglion neurons respond to decreased input from HCs by decreasing the strength of all their synaptic contacts, both as postsynaptic and presynaptic players.


Assuntos
Ototoxicidade , Roedores , Ratos , Camundongos , Animais , Roedores/metabolismo , Ototoxicidade/metabolismo , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a DNA/metabolismo
12.
Free Radic Biol Med ; 204: 177-183, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37119862

RESUMO

Aminoglycoside, a medicinal category of antibiotics, are used in treatment of Gram-negative bacterial infections. Although they are the most widely-used antibiotics due to their high efficacy and low cost, several main adverse effects have been reported including nephrotoxicity and ototoxicity. Since drug-induced ototoxicity is one of the major etiological causes of acquired hearing loss, we examined cochlear hair cell damages caused by three aminoglycosides (amikacin, kanamycin, and gentamicin), and investigated protective property of an isoquinoline-type alkaloid, Berberine chloride (BC). Berberine, a well-known bioactive compound found from medicinal plants, has been known to have anti-inflammatory, antimicrobial effects. To determine protective effect of BC in aminoglycoside-induced ototoxicity, hair cell damages in aminoglycoside- and/or BC-treated hair cells using ex vivo organotypic culture system of mouse cochlea. Mitochondrial ROS levels and depolarization of mitochondrial membrane potential were analyzed, and TUNEL assay and immunostaining of cleaved caspase-3 were performed to detect apoptosis signals. As the results, it was found that BC significantly prevented aminoglycoside-induced hair cell loss and stereocilia degeneration by inhibiting excessive accumulation of mitochondrial ROS and subsequent loss of mitochondrial membrane potential. It eventually inhibited DNA fragmentation and caspase-3 activation, which were significant for all three aminoglycosides. This study is the first report suggested the preventative effect of BC against aminoglycoside-induced ototoxicity. Our data also suggests a possibility that BC has the potential to exert a protective effect against ototoxicity caused by various ototoxic drugs leading to cellular oxidative stress, not limited to aminoglycoside antibiotics.


Assuntos
Berberina , Ototoxicidade , Camundongos , Animais , Aminoglicosídeos/toxicidade , Aminoglicosídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ototoxicidade/etiologia , Ototoxicidade/prevenção & controle , Ototoxicidade/metabolismo , Berberina/farmacologia , Caspase 3/genética , Caspase 3/metabolismo , Cloretos , Antibacterianos/efeitos adversos , Células Ciliadas Auditivas
13.
Biochim Biophys Acta Mol Cell Res ; 1870(5): 119461, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36931607

RESUMO

As an anticancer drug, cisplatin is widely used, but its clinical application is restricted due to its severe side effects of ototoxicity. Therefore, this study was dedicated to assessing the benefit of ginsenoside extract, 20(S)-Ginsenoside Rh1 (Rh1), on cisplatin-induced ototoxicity. HEI-OC1 cells and neonatal cochlear explants were cultured. Cleaved caspase-3, TUNEL, and MitoSOX Red were observed in vitro by immunofluorescence staining. CCK8 and LDH cytotoxicity assays were detected to measure cell viability and cytotoxicity. Our results showed that Rh1 significantly increased cell viability, reduced cytotoxicity, and alleviated cisplatin-induced apoptosis. In addition, Rh1 pretreatment decreased the excessive accumulation of intracellular reactive oxygen species. Mechanistic studies indicated that Rh1 pretreatment reversed the increase of apoptotic protein expression, accumulation of mitochondrial ROS, and activation of the MAPK signaling pathway. These results suggested that Rh1 can act as an antioxidant and anti-apoptotic agent against cisplatin-induced hearing loss by suppressing the excessive accumulation of mitochondrial ROS, activation of MAPK signaling pathway and apoptosis.


Assuntos
Ginsenosídeos , Perda Auditiva , Ototoxicidade , Humanos , Recém-Nascido , Cisplatino/efeitos adversos , Ginsenosídeos/efeitos adversos , Ginsenosídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ototoxicidade/metabolismo , Células Ciliadas Auditivas , Perda Auditiva/induzido quimicamente , Apoptose , Sistema de Sinalização das MAP Quinases
14.
Adv Ther ; 40(4): 1357-1365, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36738370

RESUMO

Aminoglycosides are a class of medications used to treat certain bacterial infections, specifically gram-negative aerobes. These drugs can be used alone as first-line treatments or in combination with other medications. There can be many different formulations of aminoglycosides including oral, inhalants, intravascular, intramuscular, or intraventricular. There are many distinctive types of aminoglycosides, and although they provide excellent coverage, they can have a wide variety of side effects. The most prevalent side effects of aminoglycosides are nephrotoxicity and ototoxicity. Aminoglycoside-induced nephrotoxicity is concerning because of the effects that abnormal creatinine levels can have on other drugs and the potential for neurotoxicity. Fortunately, changes in renal function are typically reversible. The kidney is affected by the drug's ability to enter the proximal tubule and cause a buildup of phospholipids in the lysosomes, inhibiting their function. Exposure to aminoglycosides in utero can result in permanent ototoxicity. The mechanism of ototoxicity is through the drug's ability to freely pass into hair cells and cause reactive oxygen species to damage the mitochondria, resulting in cell death. There is not a substantial amount of research regarding the prevention and treatment of adverse effects of aminoglycosides. Future research on the mediation or modulation of these pathophysiological processes would expand their usage in modern medicine.


Assuntos
Infecções Bacterianas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Ototoxicidade , Humanos , Aminoglicosídeos/efeitos adversos , Aminoglicosídeos/metabolismo , Ototoxicidade/etiologia , Ototoxicidade/metabolismo , Antibacterianos/efeitos adversos , Rim
15.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36834972

RESUMO

Cisplatin is a widely used standard chemotherapy for various cancers. However, cisplatin treatment is associated with severe ototoxicity. Fucoidan is a complex sulfated polysaccharide mainly derived from brown seaweeds, and it shows multiple bioactivities such as antimicrobial, anti-inflammatory, anticancer, and antioxidant activities. Despite evidence of the antioxidant effects of fucoidan, research on its otoprotective effects remains limited. Therefore, the present study investigated the otoprotective effects of fucoidan in vitro using the mouse cochlear cell line UB/OC-2 to develop new strategies to attenuate cisplatin-induced ototoxicity. We quantified the cell membrane potential and analyzed regulators and cascade proteins in the apoptotic pathway. Mouse cochlear UB/OC-2 cells were pre-treated with fucoidan before cisplatin exposure. The effects on cochlear hair cell viability, mitochondrial function, and apoptosis-related proteins were determined via flow cytometry, Western blot analysis, and fluorescence staining. Fucoidan treatment reduced cisplatin-induced intracellular reactive oxygen species production, stabilized mitochondrial membrane potential, inhibited mitochondrial dysfunction, and successfully protected hair cells from apoptosis. Furthermore, fucoidan exerted antioxidant effects against oxidative stress by regulating the Nrf2 pathway. Therefore, we suggest that fucoidan may represent a potential therapeutic agent for developing a new otoprotective strategy.


Assuntos
Antineoplásicos , Ototoxicidade , Polissacarídeos , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Antioxidantes/farmacologia , Apoptose , Cisplatino/toxicidade , Ototoxicidade/tratamento farmacológico , Ototoxicidade/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo
16.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769271

RESUMO

Cisplatin-induced ototoxicity leads to hearing impairment, possibly through reactive oxygen species (ROS) production and DNA damage in cochlear hair cells (HC), although the exact mechanism is unknown. Avenanthramide-C (AVN-C), a natural, potent antioxidant, was evaluated in three study groups of normal adult C57Bl/6 mice (control, cisplatin, and AVN-C+cisplatin) for the prevention of cisplatin-induced hearing loss. Auditory brainstem responses and immunohistochemistry of outer hair cells (OHCs) were ascertained. Cell survival, ROS production, Phospho-H2AX-enabled tracking of DNA damage-repair kinetics, and expression levels of inflammatory cytokines (TNF-α, IL-1ß, IL6, iNOS, and COX2) were assessed using House Ear Institute-Organ of Corti 1 (HEI-OC1 Cells). In the in vivo mouse model, following cisplatin-induced damage, AVN-C decreased the hearing thresholds and sheltered all cochlear turns' OHCs. In HEI-OC1 cells, AVN-C preserved cell viability and decreased ROS production, whereas cisplatin enhanced both ROS levels and cell viability. In HEI-OC1 cells, AVN-C downregulated IL6, IL-1ß, TNF-α, iNOS, and COX2 production that was upregulated by cisplatin treatment. AVN-C attenuated the cisplatin-enhanced nuclear H2AX activation. AVN-C had a strong protective effect against cisplatin-induced ototoxicity through inhibition of ROS and inflammatory cytokine production and DNA damage and is thus a promising candidate for preventing cisplatin-induced sensorineural hearing loss.


Assuntos
Antineoplásicos , Perda Auditiva , Ototoxicidade , Camundongos , Animais , Cisplatino/toxicidade , Cisplatino/metabolismo , Citocinas/metabolismo , Antineoplásicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Ototoxicidade/etiologia , Ototoxicidade/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ciclo-Oxigenase 2/metabolismo , Linhagem Celular , Apoptose , Células Ciliadas Auditivas/metabolismo , Estresse Oxidativo , Perda Auditiva/induzido quimicamente , Perda Auditiva/prevenção & controle , Perda Auditiva/metabolismo , Dano ao DNA
17.
Redox Rep ; 28(1): 2161224, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36661237

RESUMO

Cisplatin-induced ototoxicity is caused by reactive oxygen species. It has been recognized that estradiol (E2) regulates redox balance. However, little is known about the protective mechanisms of E2 against cisplatin-induced ototoxicity. In this study, we investigated the effect of E2 on nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated hair cell protection using the organ of Corti isolated from mice. The organ of Corti collected from C57BL/6 mice at 3-5 postnatal days was used in all experiments. The organ of Corti was exposed to 20 µM cisplatin with/without 100 nM E2 to examine the effect of E2 on cisplatin-induced hair cell loss. The mRNA expression of Nrf2 and the phase II detoxification gene after E2 and cisplatin treatment was analyzed using quantitative real-time PCR. E2 significantly reduces cisplatin-induced cochlear hair cell death. In addition, 100 nM E2 increased the mRNA expression of Nrf2 and phase II detoxification genes in the organ of Corti under cisplatin treatment. Our results suggest that E2 activates Nrf2, phase II detoxification enzymes and exerts a protective effect against cisplatin-induced ototoxicity.


Assuntos
Antineoplásicos , Ototoxicidade , Camundongos , Animais , Cisplatino/toxicidade , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ototoxicidade/metabolismo , Estradiol/farmacologia , Estradiol/metabolismo , Apoptose , Camundongos Endogâmicos C57BL , Células Ciliadas Auditivas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/farmacologia , Antineoplásicos/toxicidade
18.
Biochem Pharmacol ; 209: 115440, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36720354

RESUMO

Cisplatin is commonly used to treat cancers and is associated with a significant risk of irreversible sensorineural hearing loss. However, no effective preventive strategies are available for cisplatin-induced HL. Therefore, significant efforts have been made to discover new drugs protecting cochlear hair cells from cisplatin-induced damage. We found that a new phytochemical, aucubin, attenuated cisplatin-induced apoptosis, the production of reactive oxygen species, and mitochondrial dysfunction in House Ear Institute Organ of Corti 1 cells and cochlear hair cells. Moreover, aucubin attenuated cisplatin-induced sensorineural hearing loss and hair cells loss in vivo. Furthermore, RNA sequencing analysis revealed that the otoprotective effects of aucubin were mainly mediated by increased STAT3 phosphorylation via the PI3K/AKT pathway. Inhibition of the STAT3 signaling pathway with the inhibitor S3I-201 or siRNA disrupted the protective effects of aucubin on cisplatin-induced apoptosis. In conclusion, we identified an otoprotective effect of aucubin. Therefore, aucubin could be used to prevent cisplatin-induced ototoxicity.


Assuntos
Antineoplásicos , Perda Auditiva Neurossensorial , Perda Auditiva , Ototoxicidade , Camundongos , Animais , Cisplatino/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Perda Auditiva/induzido quimicamente , Perda Auditiva/tratamento farmacológico , Perda Auditiva/prevenção & controle , Ototoxicidade/metabolismo , Cóclea/metabolismo , Células Ciliadas Auditivas , Apoptose , Espécies Reativas de Oxigênio/metabolismo , Perda Auditiva Neurossensorial/tratamento farmacológico , Perda Auditiva Neurossensorial/metabolismo , Antineoplásicos/farmacologia
19.
Drug Chem Toxicol ; 46(2): 369-379, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35172660

RESUMO

Cisplatin is a widely used chemotherapeutic agent. However, its clinical application remains limited due to the high incidence of severe ototoxicity. It has been reported that the unfolded protein response (UPR) is involved in cisplatin-induced ototoxicity. However, the specific mechanism underlying its effect remains unclear. Therefore, the present study aimed to explore the sequential changes in the key UPR signaling branch and its potential pro-apoptotic role in cisplatin-induced ototoxicity. The hair cell-like OC-1 cells were treated with cisplatin for different periods and then the expression levels of the UPR- and apoptosis-related proteins were determined. The results showed that the apoptotic rate of cells was gradually increased with prolonged cisplatin treatment. Furthermore, the sequential changes in three UPR signaling branches were evaluated. The expression levels of activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) were gradually increased with up to 12 h of cisplatin treatment. The aforementioned expression profile was consistent with that observed for the apoptosis-related proteins. Subsequently, the proportion of apoptotic cells was notably decreased in CHOP-silenced hair cell-like OC-1 cells following treatment with cisplatin. Moreover, we found significant hair cells loss and a higher level of CHOP in cisplatin-treated cochlear explants in a time-dependent manner. Overall, the present study demonstrated that the protein kinase RNA­like endoplasmic reticulum kinase (PERK)/ATF4/CHOP signaling branch could play an important role in cisplatin-induced cell apoptosis. Furthermore, the current study suggested that CHOP may be considered as a promising therapeutic target for cisplatin-induced ototoxicity.


Assuntos
Cisplatino , Ototoxicidade , Humanos , Cisplatino/toxicidade , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/farmacologia , Estresse do Retículo Endoplasmático/fisiologia , RNA/metabolismo , RNA/farmacologia , Ototoxicidade/metabolismo , Resposta a Proteínas não Dobradas , Retículo Endoplasmático/metabolismo
20.
Biomed Pharmacother ; 157: 114045, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36455457

RESUMO

Administration of cisplatin, a common chemotherapeutic drug, has an inevitable side effect of sensorineural hearing loss. The main etiologies are stria vascularis injury, spiral ganglion degeneration, and hair cell death. Over several decades, the research scope of cisplatin-induced ototoxicity has expanded with the discovery of the molecular mechanism mediating inner ear cell death, highlighting the roles of reactive oxygen species and transport channels for cisplatin uptake into inner ear cells. Upon entering hair cells, cisplatin disrupts organelle metabolism, induces oxidative stress, and targets DNA to cause intracellular damage. Recent studies have also reported the role of inflammation in cisplatin-induced ototoxicity. In this article, we preform a narrative review of the latest reported molecular mechanisms of cisplatin-induced ototoxicity, from extracellular to intracellular. We build up a signaling network starting with cisplatin entering into the inner ear through the blood labyrinth barrier, disrupting cochlear endolymph homeostasis, and activating inflammatory responses of the outer hair cells. After entering the hair cells, cisplatin causes hair cell death via DNA damage, redox system imbalance, and mitochondrial and endoplasmic reticulum dysfunction, culminating in programmed cell death including apoptosis, necroptosis, autophagic death, pyroptosis, and ferroptosis. Based on the mentioned mechanisms, prominent therapeutic targets, such as channel-blocking drugs of cisplatin transporter, construction of cisplatin structural analogues, anti-inflammatory drugs, antioxidants, cell death inhibitors, and others, were collated. Considering the recent research efforts, we have analyzed the feasibility of the aforementioned therapeutic strategies and proposed our otoprotective approaches to overcome cisplatin-induced ototoxicity.


Assuntos
Antineoplásicos , Ototoxicidade , Humanos , Cisplatino/toxicidade , Cisplatino/metabolismo , Antineoplásicos/toxicidade , Antineoplásicos/metabolismo , Células Ciliadas Auditivas , Ototoxicidade/etiologia , Ototoxicidade/metabolismo , Cóclea , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...